Liver X Receptor Regulation of Thyrotropin-Releasing Hormone Transcription in Mouse Hypothalamus Is Dependent on Thyroid Status

نویسندگان

  • Rym Ghaddab-Zroud
  • Isabelle Seugnet
  • Knut R. Steffensen
  • Barbara A. Demeneix
  • Marie-Stéphanie Clerget-Froidevaux
  • Hervé Guillou
چکیده

Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs) and thyroid hormone receptors (TRs) are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases. However, no data is available on such interactions in the brain. We tested the hypothesis that hypothalamic LXR/TR interactions could co-regulate signalling pathways involved in the central regulation of metabolism. Using in vivo gene transfer we show that LXR activation by its synthetic agonist GW3965 represses the transcriptional activity of two key metabolic genes, Thyrotropin-releasing hormone (Trh) and Melanocortin receptor type 4 (Mc4r) in the hypothalamus of euthyroid mice. Interestingly, this repression did not occur in hypothyroid mice but was restored in the case of Trh by thyroid hormone (TH) treatment, highlighting the role of the triiodothyronine (T3) and TRs in this dialogue. Using shLXR to knock-down LXRs in vivo in euthyroid newborn mice, not only abrogated Trh repression but actually increased Trh transcription, revealing a potential inhibitory effect of LXR on the Hypothalamic-Pituitary-Thyroid axis. In vivo chromatin immunoprecipitation (ChIP) revealed LXR to be present on the Trh promoter region in the presence of T3 and that Retinoid X Receptor (RXR), a heterodimerization partner for both TR and LXR, was never recruited simultaneously with LXR. Interactions between the TR and LXR pathways were confirmed by qPCR experiments. T3 treatment of newborn mice induced hypothalamic expression of certain key LXR target genes implicated in metabolism and inflammation. Taken together the results indicate that the crosstalk between LXR and TR signalling in the hypothalamus centres on metabolic and inflammatory pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression.

The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of...

متن کامل

Thyroid hormone regulation of metabolism.

Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D...

متن کامل

Physiological regulation of hypothalamic TRH transcription in vivo is T3 receptor isoform specific.

Thyroid hormone (tri-iodo-thyronine, T3) exerts transcriptional effects on target genes in responsive cells. These effects are determined by DNA/protein interactions governed by the type of T3 receptors (TRs) in the cell. As TRs show tissue and developmental variations, regulation is best addressed in an integrated in vivo model. We examined TR subtype effects on thyrotropin-releasing hormone (...

متن کامل

Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin.

Patients with resistance to thyroid hormone (RTH) exhibit elevated thyroid hormone levels and inappropriate thyrotropin (thyroid-stimulating hormone, or TSH) production. The molecular basis of this disorder resides in the dominant inhibition of endogenous thyroid hormone receptors (TRs) by a mutant receptor. To determine the relative contributions of pituitary versus hypothalamic resistance to ...

متن کامل

Distinct and Histone-Specific Modifications Mediate Positive versus Negative Transcriptional Regulation of TSHα Promoter

BACKGROUND Hormonally-regulated histone modifications that govern positive versus negative transcription of target genes are poorly characterized despite their importance for normal and pathological endocrine function. There have been only a few studies examining chromatin modifications on target gene promoters by nuclear hormone receptors. Moreover, these studies have focused on positively-reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014